Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbes Environ ; 36(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34433738

RESUMO

Current challenges in the anaerobic bioremediation of benzene are the lack of capable cultures and limited knowledge on the biodegradation pathway. Under methanogenic conditions, benzene may be mineralized by syntrophic interactions between microorganisms, which are poorly understood. The present study developed an optimized formula for anoxic medium to successfully promote the growth of the putative benzene degrader Deltaproteobacterium Hasda-A and enhance the benzene degradation activity of methanogenic enrichment cultures. Within 70| |d of incubation, the benzene degradation activity and relative abundance of Hasda-A in cultures in the new defined medium increased from 0.5 to >3| |mg L-1 d-1 and from 2.5% to >17%, respectively. Together with Hasda-A, we found a strong positive relationship between the abundances of superphylum OD1 bacteria, three methanogens (Methanoregula, Methanolinea, and Methanosaeta) and benzene degradation activity. The syntrophic relationship between these microbial taxa and Hasda-A was then demonstrated in a correlation analysis of longitudinal data. The involvement of methanogenesis in anaerobic benzene mineralization was confirmed by inhibition experiments. The high benzene degradation activity and growth of Hasda-A were quickly recovered in successive dilutions of enrichment cultures, proving the feasibility of using the medium developed in the present study to produce highly capable cultures. The present results will facilitate practical applications in bioremediation and research on the molecular mechanisms underlying benzene activation and syntrophic interactions in benzene mineralization.


Assuntos
Benzeno/metabolismo , Meios de Cultura/química , Deltaproteobacteria/metabolismo , Metano/metabolismo , Methanosarcinales/metabolismo , Anaerobiose , Biodegradação Ambiental , Crescimento Quimioautotrófico , Técnicas de Cocultura , Meios de Cultura/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Methanosarcinales/crescimento & desenvolvimento
2.
Syst Appl Microbiol ; 44(5): 126236, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34332367

RESUMO

Cable bacteria are multicellular filamentous bacteria within the Desulfobulbaceae that couple the oxidation of sulfide to the reduction of oxygen over centimeter distances via long distance electron transport (LDET). So far, none of the freshwater or marine cable bacteria species have been isolated into pure culture. Here we describe a method for establishing a stable single-strain cable bacterium culture in partially sterilized sediment. By repeated transfers of a single cable bacterium filament from freshwater pond sediment into autoclaved sediment, we obtained strain GS, identified by its 16S rRNA gene as a member of Ca. Electronema. This strain was further propagated by transferring sediment clumps, and has now been stable within its semi-natural microbial community for several years. Its metagenome-assembled genome was 93% complete, had a size of 2.76 Mbp, and a DNA G + C content of 52%. Average Nucleotide Identity (ANI) and Average Amino Acid Identity (AAI) suggest the affiliation of strain GS to Ca. Electronema as a novel species. Cell size, number of outer ridges, and detection of LDET in the GS culture are likewise consistent with Ca. Electronema. Based on these combined features, we therefore describe strain GS as a new cable bacterium species of the candidate genus Electronema, for which we propose the name Candidatus Electronema aureum sp.nov. Although not a pure culture, this stable single-strain culture will be useful for physiological and omics-based studies; similar approaches with single-cell or single-filament transfers into natural medium may also aid the characterization of other difficult-to-culture microbes.


Assuntos
Técnicas Bacteriológicas , Deltaproteobacteria , Sedimentos Geológicos , Filogenia , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Nature ; 592(7856): 784-788, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883741

RESUMO

It has recently been shown that in anaerobic microorganisms the tricarboxylic acid (TCA) cycle, including the seemingly irreversible citrate synthase reaction, can be reversed and used for autotrophic fixation of carbon1,2. This reversed oxidative TCA cycle requires ferredoxin-dependent 2-oxoglutarate synthase instead of the NAD-dependent dehydrogenase as well as extremely high levels of citrate synthase (more than 7% of the proteins in the cell). In this pathway, citrate synthase replaces ATP-citrate lyase of the reductive TCA cycle, which leads to the spending of one ATP-equivalent less per one turn of the cycle. Here we show, using the thermophilic sulfur-reducing deltaproteobacterium Hippea maritima, that this route is driven by high partial pressures of CO2. These high partial pressures are especially important for the removal of the product acetyl coenzyme A (acetyl-CoA) through reductive carboxylation to pyruvate, which is catalysed by pyruvate synthase. The reversed oxidative TCA cycle may have been functioning in autotrophic CO2 fixation in a primordial atmosphere that is assumed to have been rich in CO2.


Assuntos
Processos Autotróficos , Dióxido de Carbono/química , Ciclo do Ácido Cítrico , Deltaproteobacteria/enzimologia , ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Pressão Parcial , Ácido Pirúvico/metabolismo
4.
BMC Microbiol ; 21(1): 50, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593288

RESUMO

BACKGROUND: Degradation of acetone by aerobic and nitrate-reducing bacteria can proceed via carboxylation to acetoacetate and subsequent thiolytic cleavage to two acetyl residues. A different strategy was identified in the sulfate-reducing bacterium Desulfococcus biacutus that involves formylation of acetone to 2-hydroxyisobutyryl-CoA. RESULTS: Utilization of short-chain ketones (acetone, butanone, 2-pentanone and 3-pentanone) and isopropanol by the sulfate reducer Desulfosarcina cetonica was investigated by differential proteome analyses and enzyme assays. Two-dimensional protein gel electrophoresis indicated that D. cetonica during growth with acetone expresses enzymes homologous to those described for Desulfococcus biacutus: a thiamine diphosphate (TDP)-requiring enzyme, two subunits of a B12-dependent mutase, and a NAD+-dependent dehydrogenase. Total proteomics of cell-free extracts confirmed these results and identified several additional ketone-inducible proteins. Acetone is activated, most likely mediated by the TDP-dependent enzyme, to a branched-chain CoA-ester, 2-hydroxyisobutyryl-CoA. This compound is linearized to 3-hydroxybutyryl-CoA by a coenzyme B12-dependent mutase followed by oxidation to acetoacetyl-CoA by a dehydrogenase. Proteomic analysis of isopropanol- and butanone-grown cells revealed the expression of a set of enzymes identical to that expressed during growth with acetone. Enzyme assays with cell-free extract of isopropanol- and butanone-grown cells support a B12-dependent isomerization. After growth with 2-pentanone or 3-pentanone, similar protein patterns were observed in cell-free extracts as those found after growth with acetone. CONCLUSIONS: According to these results, butanone and isopropanol, as well as the two pentanone isomers, are degraded by the same enzymes that are used also in acetone degradation. Our results indicate that the degradation of several short-chain ketones appears to be initiated by TDP-dependent formylation in sulfate-reducing bacteria.


Assuntos
2-Propanol/metabolismo , Acetona/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Cetonas/metabolismo , Sulfatos/metabolismo , 2-Propanol/farmacologia , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/crescimento & desenvolvimento , Cetonas/química , Oxirredução , Proteoma , Proteômica/métodos
5.
FEMS Microbiol Lett ; 367(9)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267916

RESUMO

Temperature influences microbiological growth and catabolic rates. Between 15 and 35 °C the growth rate and cell specific sulfate reduction rate of the sulfate reducing bacterium Desulfococcus multivorans increased with temperature. Sulfur isotope fractionation during sulfate reduction decreased with increasing temperature from 27.2 ‰ at 15 °C to 18.8 ‰ at 35 °C which is consistent with a decreasing reversibility of the metabolic pathway as the catabolic rate increases. Oxygen isotope fractionation, in contrast, decreased between 15 and 25 °C and then increased again between 25 and 35 °C, suggesting increasing reversibility in the first steps of the sulfate reducing pathway at higher temperatures. This points to a decoupling in the reversibility of sulfate reduction between the steps from the uptake of sulfate into the cell to the formation of sulfite, relative to the whole pathway from sulfate to sulfide. This observation is consistent with observations of increasing sulfur isotope fractionation when sulfate reducing bacteria are living near their upper temperature limit. The oxygen isotope decoupling may be a first signal of changing physiology as the bacteria cope with higher temperatures.


Assuntos
Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Isótopos de Oxigênio/metabolismo , Isótopos de Enxofre/metabolismo , Fracionamento Químico , Meios de Cultura , Microbiologia Industrial , Redes e Vias Metabólicas , Oxirredução , Sulfetos/metabolismo , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismo , Temperatura
6.
Proc Natl Acad Sci U S A ; 117(10): 5478-5485, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094191

RESUMO

Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the "community service" performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.


Assuntos
Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Eletricidade , Transporte de Elétrons , Amônia/metabolismo , Isótopos de Carbono , Espectrometria de Massa de Íon Secundário , Sulfetos/metabolismo
7.
ISME J ; 14(2): 425-436, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31641279

RESUMO

Redox-active iron minerals can act as energy sources or electron-transferring mediators in microbial syntrophic associations, being important means of interspecies metabolic cooperation in sedimentary environments. Alkaline conditions alter the thermodynamic stability of iron minerals, influencing their availability for interspecies syntrophic interactions. We have modeled anaerobic alkaliphilic microbial associations in ethanol-oxidizing co-culture of an obligate syntroph Candidatus "Contubernalis alkalaceticum" and a facultative lithotroph Geoalkalibacter ferrihydriticus, which is capable of dissimilatory Fe(III) reduction and homoacetogenic oxidation of Fe(II) with CO2. The co-cultures were cultivated with thermodynamically metastable ferric-containing ferrihydrite, or ferrous-containing siderite, or without minerals. Mössbauer spectral analysis revealed the transformation of both minerals to the stable magnetite. In the presence of ferrihydrite, G. ferrihydriticus firstly reduced Fe(III) with ethanol and then switched to syntrophic homoacetogenesis, providing the growth of obligate syntroph on ethanol. The ability of G. ferrihydriticus to accept hydrogen from its syntrophic partner and produce extra acetate from carbonate during ethanol oxidation was confirmed by co-culture growth without minerals. In the presence of siderite, G. ferrihydriticus performed homoacetogenesis using two electron donors simultaneously- siderite and hydrogen. Pieces of evidence for direct and indirect hydrogen-mediated electron exchange between partner organisms were obtained. Relative abundancies of partner organisms and the rate of acetate production by their co-cultures were strongly determined by thermodynamic benefits, which G. ferrihydriticus got from redox transformations of iron minerals. Even the minor growth of G. ferrihydriticus sustained the growth of the syntroph. Accordingly, microbe-to-mineral interactions could represent underestimated drivers of syntrophic interactions in alkaline sedimentary environments.


Assuntos
Acetatos/metabolismo , Deltaproteobacteria/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Firmicutes/metabolismo , Interações Microbianas , Minerais/metabolismo , Anaerobiose , Carbonatos/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Etanol/metabolismo , Óxido Ferroso-Férrico/metabolismo , Firmicutes/crescimento & desenvolvimento , Oxirredução , Simbiose
8.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836581

RESUMO

Organohalide respiration is an important process in the global halogen cycle and for bioremediation. In this study, we compared the global transcriptomic and proteomic analyses of Desulfoluna spongiiphila strain AA1, an organohalide-respiring member of the Desulfobacterota isolated from a marine sponge, with 2,6-dibromophenol or with sulfate as an electron acceptor. The most significant difference of the transcriptomic analysis was the expression of one reductive dehalogenase gene cluster (rdh16), which was significantly upregulated with the addition of 2,6-dibromophenol. The corresponding protein, reductive dehalogenase RdhA16032, was detected in the proteome under treatment with 2,6-dibromophenol but not with sulfate only. There was no significant difference in corrinoid biosynthesis gene expression levels between the two treatments, indicating that the production of corrinoid in D. spongiiphila is constitutive or not specific for organohalide versus sulfate respiration. Electron-transporting proteins or mediators unique for reductive dehalogenation were not revealed in our analysis, and we hypothesize that reductive dehalogenation may share an electron-transporting system with sulfate reduction. The metabolism of D. spongiiphila, predicted from transcriptomic and proteomic results, demonstrates high metabolic versatility and provides insights into the survival strategies of a marine sponge symbiont in an environment rich in organohalide compounds and other secondary metabolites.IMPORTANCE Respiratory reductive dehalogenation is an important process in the overall cycling of both anthropogenic and natural organohalide compounds. Marine sponges produce a vast array of bioactive compounds as secondary metabolites, including diverse halogenated compounds that may enrich for dehalogenating bacteria. Desulfoluna spongiiphila strain AA1 was originally enriched and isolated from the marine sponge Aplysina aerophoba and can grow with both brominated compounds and sulfate as electron acceptors for respiration. An understanding of the overall gene expression and the protein production profile in response to organohalides is needed to identify the full complement of genes or enzymes involved in organohalide respiration. Elucidating the metabolic capacity of this sponge-associated bacterium lays the foundation for understanding how dehalogenating bacteria may control the fate of organohalide compounds in sponges and their role in a symbiotic organobromine cycle.


Assuntos
Proteínas de Bactérias/genética , Deltaproteobacteria/genética , Fenóis/metabolismo , Proteoma , Sulfatos/metabolismo , Transcriptoma , Animais , Proteínas de Bactérias/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Halogenação , Família Multigênica , Oxirredução , Poríferos/microbiologia
9.
Environ Microbiol ; 22(5): 1829-1846, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31840312

RESUMO

Anaerobic methanotrophic archaea (ANME) consume methane in marine sediments, limiting its release to the water column, but their responses to changes in methane and sulfate supplies remain poorly constrained. To address how methane exposure may affect microbial communities and methane- and sulfur-cycling gene abundances in Arctic marine sediments, we collected sediments from offshore Svalbard that represent geochemical horizons where anaerobic methanotrophy is expected to be active, previously active, and long-inactive based on reaction-transport biogeochemical modelling of porewater sulfate profiles. Sediment slurries were incubated at in situ temperature and pressure with different added methane concentrations. Sediments from an active area of seepage began to reduce sulfate in a methane-dependent manner within months, preceding increased relative abundances of anaerobic methanotrophs ANME-1 within communities. In previously active and long-inactive sediments, sulfur-cycling Deltaproteobacteria became more dominant after 30 days, though these communities showed no evidence of methanotrophy after nearly 8 months of enrichment. Overall, enrichment conditions, but not methane, broadly altered microbial community structure across different enrichment times and sediment types. These results suggest that active ANME populations may require years to develop, and consequently microbial community composition may affect methanotrophic responses to potential large-scale seafloor methane releases in ways that provide insight for future modelling studies.


Assuntos
Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Sulfatos/metabolismo , Anaerobiose/fisiologia , Archaea/genética , Regiões Árticas , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Microbiota , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Svalbard
10.
Syst Appl Microbiol ; 42(5): 125998, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31345671

RESUMO

Desulfatiglans anilini is a sulfate-reducing bacterium (SRB) capable of oxidizing aniline, although growth and aniline turnover rates are slow, making it difficult to analyze the metabolism of the strain. Therefore, this study was designed to investigate the effect of sulfide on growth of D. anilini cultures, in order to improve its growth and aniline turnover rates, and study the biochemical mechanisms of sulfide inhibition. Hydrogen sulfide was found to inhibit growth of D. anilini, regardless of whether the strain was grown with aniline or phenol, and complete inhibition was observed at 20mM hydrogen sulfide. For improving the growth of D. anilini with aniline, the sulfide-consuming phototrophic bacterium Thiocapsa roseopersicina was co-cultured in a synthetic microbial community with D. anilini using a co-cultivation device that continuously removed hydrogen sulfide from the culture. The doubling time of D. anilini with aniline was 15 days in the co-cultivation device, compared to 26 days in the absence of a sulfide-oxidizing partner. Moreover, the aniline degradation rate was significantly increased by a factor of 2.66 during co-cultivation of D. anilini with T. roseopersicina. The initial carboxylation reaction during aniline degradation was measured in cell-free extracts of D. anilini with carbon dioxide (CO2) as a co-substrate in the presence of aniline and ATP. The effects of hydrogen sulfide on this aniline carboxylating system and on phenylphosphate synthase activity for phenol activation were studied, and it was concluded that hydrogen sulfide severely inhibited these enzyme activities.


Assuntos
Compostos de Anilina/metabolismo , Deltaproteobacteria/metabolismo , Microbiota , Thiocapsa roseopersicina/metabolismo , Biodegradação Ambiental , Técnicas de Cocultura , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/crescimento & desenvolvimento , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Oxirredução , Fenóis/metabolismo
11.
Archaea ; 2019: 1751783, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191117

RESUMO

The inoculum source plays a crucial role in the anaerobic treatment of wastewaters. Lipids are present in various wastewaters and have a high methanogenic potential, but their hydrolysis results in the production of long chain fatty acids (LCFAs) that are inhibitory to anaerobic microorganisms. Screening of inoculum for the anaerobic treatment of LCFA-containing wastewaters has been performed at mesophilic and thermophilic conditions. However, an evaluation of inocula for producing methane from LCFA-containing wastewater has not yet been conducted at low temperatures and needs to be undertaken. In this study, three inocula (one granular sludge and two municipal digester sludges) were assessed for methane production from LCFA-containing synthetic dairy wastewater (SDW) at low temperatures (10 and 20°C). A methane yield (based on mL-CH4/g-CODadded) of 86-65% with acetate and 45-20% with SDW was achieved within 10 days using unacclimated granular sludge, whereas the municipal digester sludges produced methane only at 20°C but not at 10°C even after 200 days of incubation. The acetotrophic activity in the inoculum was found to be crucial for methane production from LCFA at low temperatures, highlighting the role of Methanosaeta (acetoclastic archaea) at low temperatures. The presence of bacterial taxa from the family Syntrophaceae (Syntrophus and uncultured taxa) in the inoculum was found to be important for methane production from SDW at 10°C. This study suggests the evaluation of acetotrophic activity and the initial microbial community characteristics by high-throughput amplicon sequencing for selecting the inoculum for producing methane at low temperatures (up to 10°C) from lipid-containing wastewaters.


Assuntos
Acetatos/metabolismo , Ácidos Graxos/metabolismo , Metano/biossíntese , Microbiota , Esgotos/microbiologia , Temperatura , Anaerobiose , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Methanosarcinales/crescimento & desenvolvimento , Methanosarcinales/metabolismo
12.
mBio ; 10(2)2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992358

RESUMO

Energy-starved microbes in deep marine sediments subsist at near-zero growth for thousands of years, yet the mechanisms for their subsistence are unknown because no model strains have been cultivated from most of these groups. We investigated Baltic Sea sediments with single-cell genomics, metabolomics, metatranscriptomics, and enzyme assays to identify possible subsistence mechanisms employed by uncultured Atribacteria, Aminicenantes, Actinobacteria group OPB41, Aerophobetes, Chloroflexi, Deltaproteobacteria, Desulfatiglans, Bathyarchaeota, and Euryarchaeota marine group II lineages. Some functions appeared to be shared by multiple lineages, such as trehalose production and NAD+-consuming deacetylation, both of which have been shown to increase cellular life spans in other organisms by stabilizing proteins and nucleic acids, respectively. Other possible subsistence mechanisms differed between lineages, possibly providing them different physiological niches. Enzyme assays and transcripts suggested that Atribacteria and Actinobacteria group OPB41 catabolized sugars, whereas Aminicenantes and Atribacteria catabolized peptides. Metabolite and transcript data suggested that Atribacteria utilized allantoin, possibly as an energetic substrate or chemical protectant, and also possessed energy-efficient sodium pumps. Atribacteria single-cell amplified genomes (SAGs) recruited transcripts for full pathways for the production of all 20 canonical amino acids, and the gene for amino acid exporter YddG was one of their most highly transcribed genes, suggesting that they may benefit from metabolic interdependence with other cells. Subsistence of uncultured phyla in deep subsurface sediments may occur through shared strategies of using chemical protectants for biomolecular stabilization, but also by differentiating into physiological niches and metabolic interdependencies.IMPORTANCE Much of life on Earth exists in a very slow-growing state, with microbes from deeply buried marine sediments representing an extreme example. These environments are like natural laboratories that have run multi-thousand-year experiments that are impossible to perform in a laboratory. We borrowed some techniques that are commonly used in laboratory experiments and applied them to these natural samples to make hypotheses about how these microbes subsist for so long at low activity. We found that some methods for stabilizing proteins and nucleic acids might be used by many members of the community. We also found evidence for niche differentiation strategies, and possibly cross-feeding, suggesting that even though they are barely growing, complex ecological interactions continue to occur over ultralong timescales.


Assuntos
Archaea/classificação , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Metagenoma , Filogenia , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Países Bálticos , Deltaproteobacteria/classificação , Deltaproteobacteria/crescimento & desenvolvimento , Ecossistema , Genômica , Oceanos e Mares , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Tempo
13.
BMC Microbiol ; 18(1): 93, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157755

RESUMO

BACKGROUND: The sulfate-reducing bacterium Desulfatiglans anilini can grow with phenol as sole source of carbon and energy under strictly anaerobic, sulfate-reducing conditions. In the nitrate-reducing bacterium Thauera aromatica, the enzymes involved in phenol degradation have been well elucidated, whereas the anaerobic phenol degradation pathway by D. anilini was not studied in detail yet. RESULTS: The pathway of anaerobic phenol degradation by the sulfate-reducing bacterium Desulfatiglans anilini was studied by identification of genes coding for phenylphosphate synthase (encoded by pps genes) and phenylphosphate carboxylase (encoded by ppc genes) in the genome of D. anilini, by analysis of the transcription and translation of pps-ppc genes, and by measurement of phenylphosphate synthase activity in cell-free extracts of phenol-grown cells. The majority of genes involved in phenol degradation were found to be organized in one gene cluster. The gene cluster contained genes ppsα (phenylphosphate synthase alpha subunit), ppsß (phenylphosphate synthase beta subunit), ppcß (phenylphosphate carboxylase beta subunit), as well as 4-hydroxybenzoyl-CoA ligase and 4-hydroxylbenzoyl-CoA reductase-encoding genes. The genes ppsγ (phenylphosphate synthase gamma subunit), ppcα (phenylphosphate carboxylase alpha subunit) and ppcδ (phenylphosphate carboxylase delta subunit) were located elsewhere in the genome of D. anilini, and no obvious homologue of ppcγ (phenylphosphate carboxylase gamma subunit) was found in the genome. Induction of genes pps and ppc during growth on phenol was confirmed by reverse transcription polymerase chain reaction. Total proteome analysis revealed that the abundance of enzymes encoded by the gene cluster under study was much higher in phenol-grown cells than that in benzoate-grown cells. In in-vitro enzyme assays with cell-free extracts of phenol-grown cells, phenylphosphate was formed from phenol in the presence of ATP, Mg2+, Mn2+, K+ as co-factors. CONCLUSIONS: The genes coding for enzymes involved in the anaerobic phenol degradation pathway were identified in the sulfate-reducing bacterium D. anilini. The results indicate that the first steps of anaerobic phenol degradation in D. anilini are phosphorylation of phenol to phenylphosphate by phenylphosphate synthase and carboxylation of phenylphosphate by phenylphosphate carboxylase.


Assuntos
Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Redes e Vias Metabólicas/genética , Fenóis/metabolismo , Sulfatos/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Benzoatos/metabolismo , Biodegradação Ambiental , Carbono-Carbono Liases/genética , Coenzima A Ligases/genética , Deltaproteobacteria/crescimento & desenvolvimento , Genes Bacterianos/genética , Genoma Bacteriano/genética , Família Multigênica , Organofosfatos/metabolismo , Oxirredução , Proteoma , Proteômica , Thauera/enzimologia
14.
Science ; 359(6375): 563-567, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420287

RESUMO

Biological inorganic carbon fixation proceeds through a number of fundamentally different autotrophic pathways that are defined by specific key enzymatic reactions. Detection of the enzymatic genes in (meta)genomes is widely used to estimate the contribution of individual organisms or communities to primary production. Here we show that the sulfur-reducing anaerobic deltaproteobacterium Desulfurella acetivorans is capable of both acetate oxidation and autotrophic carbon fixation, with the tricarboxylic acid cycle operating either in the oxidative or reductive direction, respectively. Under autotrophic conditions, the enzyme citrate synthase cleaves citrate adenosine triphosphate independently into acetyl coenzyme A and oxaloacetate, a reaction that has been regarded as impossible under physiological conditions. Because this overlooked, energetically efficient carbon fixation pathway lacks key enzymes, it may function unnoticed in many organisms, making bioinformatical predictions difficult, if not impossible.


Assuntos
Processos Autotróficos , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Citrato (si)-Sintase/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/crescimento & desenvolvimento , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido Cítrico/metabolismo , Ácido Oxaloacético/metabolismo
15.
Biodegradation ; 29(1): 23-39, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29177812

RESUMO

An anaerobic culture (1MN) was enriched with 1-methylnaphthalene as sole source of carbon and electrons and Fe(OH)3 as electron acceptor. 1-Naphthoic acid was produced as a metabolite during growth with 1-methylnaphthalene while 2-naphthoic acid was detected with naphthalene and 2-methylnaphthalene. This indicates that the degradation pathway of 1-methylnaphthalene might differ from naphthalene and 2-methylnaphthalene degradation in sulfate reducers. Terminal restriction fragment length polymorphism and pyrosequencing revealed that the culture is mainly composed of two bacteria related to uncultured Gram-positive Thermoanaerobacteraceae and uncultured gram-negative Desulfobulbaceae. Stable isotope probing showed that a 13C-carbon label from 13C10-naphthalene as growth substrate was mostly incorporated by the Thermoanaerobacteraceae. The presence of putative genes involved in naphthalene degradation in the genome of this organism was confirmed via assembly-based metagenomics and supports that it is the naphthalene-degrading bacterium in the culture. Thermoanaerobacteraceae have previously been detected in oil sludge under thermophilic conditions, but have not been shown to degrade hydrocarbons so far. The second member of the community belongs to the Desulfobulbaceae and has high sequence similarity to uncultured bacteria from contaminated sites including recently proposed groundwater cable bacteria. We suggest that the gram-positive Thermoanaerobacteraceae degrade polycyclic aromatic hydrocarbons while the Desulfobacterales are mainly responsible for Fe(III) reduction.


Assuntos
Deltaproteobacteria/metabolismo , Ferro/metabolismo , Naftalenos/metabolismo , Trifosfato de Adenosina/biossíntese , Anaerobiose , Biodegradação Ambiental , Carbono/farmacologia , Deltaproteobacteria/crescimento & desenvolvimento , Funções Verossimilhança , Metaboloma , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
16.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667109

RESUMO

Acetylene (C2H2) is a trace constituent of the present Earth's oxidizing atmosphere, reflecting a mixture of terrestrial and marine emissions from anthropogenic, biomass-burning, and unidentified biogenic sources. Fermentation of acetylene was serendipitously discovered during C2H2 block assays of N2O reductase, and Pelobacter acetylenicus was shown to grow on C2H2 via acetylene hydratase (AH). AH is a W-containing, catabolic, low-redox-potential enzyme that, unlike nitrogenase (N2ase), is specific for acetylene. Acetylene fermentation is a rare metabolic process that is well characterized only in P. acetylenicus DSM3246 and DSM3247 and Pelobacter sp. strain SFB93. To better understand the genetic controls for AH activity, we sequenced the genomes of the three acetylene-fermenting Pelobacter strains. Genome assembly and annotation produced three novel genomes containing gene sequences for AH, with two copies being present in SFB93. In addition, gene sequences for all five compulsory genes for iron-molybdenum N2ase were also present in the three genomes, indicating the cooccurrence of two acetylene transformation pathways. Nitrogen fixation growth assays showed that DSM3426 could ferment acetylene in the absence of ammonium, but no ethylene was produced. However, SFB93 degraded acetylene and, in the absence of ammonium, produced ethylene, indicating an active N2ase. Diazotrophic growth was observed under N2 but not in experimental controls incubated under argon. SFB93 exhibits acetylene fermentation and nitrogen fixation, the only known biochemical mechanisms for acetylene transformation. Our results indicate complex interactions between N2ase and AH and suggest novel evolutionary pathways for these relic enzymes from early Earth to modern days.IMPORTANCE Here we show that a single Pelobacter strain can grow via acetylene fermentation and carry out nitrogen fixation, using the only two enzymes known to transform acetylene. These findings provide new insights into acetylene transformations and adaptations for nutrient (C and N) and energy acquisition by microorganisms. Enhanced understanding of acetylene transformations (i.e., extent, occurrence, and rates) in modern environments is important for the use of acetylene as a potential biomarker for extraterrestrial life and for degradation of anthropogenic contaminants.


Assuntos
Acetileno/metabolismo , Deltaproteobacteria/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Deltaproteobacteria/crescimento & desenvolvimento , Fermentação , Genoma Bacteriano , Hidroliases/genética , Hidroliases/metabolismo , Molibdênio/metabolismo , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Filogenia
17.
mBio ; 8(4)2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720728

RESUMO

This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase.IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus, with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an exciting model organism in which to study the physiology of this process.


Assuntos
Compostos de Amônio/metabolismo , Crescimento Quimioautotrófico , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Sulfetos/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Oxirredução , Enxofre/metabolismo
18.
BMC Microbiol ; 16(1): 280, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884109

RESUMO

BACKGROUND: The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. RESULTS: The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD+ but not NADPH/NADP+ as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C3 - C5-aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg-1 protein), butanal to butanol (300 ± 24 mU mg-1), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg-1), however, the enzyme also oxidized 3-hydroxybutanal with NAD+ to acetoacetaldehyde (83 ± 18 mU mg-1). CONCLUSION: The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.


Assuntos
Acetona/metabolismo , Aldeídos/metabolismo , Clonagem de Organismos , Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetona/química , Álcool Desidrogenase/metabolismo , Aldeídos/química , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butanóis/metabolismo , Butileno Glicóis/química , Monóxido de Carbono/metabolismo , Coenzimas/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas/genética , NAD/metabolismo , NADP/metabolismo , Propanóis/metabolismo , Proteômica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura , Zinco/metabolismo
19.
ISME J ; 10(6): 1499-513, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26613341

RESUMO

Australia's tropical waters represent predicted 'hotspots' for nitrogen (N2) fixation based on empirical and modelled data. However, the identity, activity and ecology of diazotrophs within this region are virtually unknown. By coupling DNA and cDNA sequencing of nitrogenase genes (nifH) with size-fractionated N2 fixation rate measurements, we elucidated diazotroph dynamics across the shelf region of the Arafura and Timor Seas (ATS) and oceanic Coral Sea during Austral spring and winter. During spring, Trichodesmium dominated ATS assemblages, comprising 60% of nifH DNA sequences, while Candidatus Atelocyanobacterium thalassa (UCYN-A) comprised 42% in the Coral Sea. In contrast, during winter the relative abundance of heterotrophic unicellular diazotrophs (δ-proteobacteria and γ-24774A11) increased in both regions, concomitant with a marked decline in UCYN-A sequences, whereby this clade effectively disappeared in the Coral Sea. Conservative estimates of N2 fixation rates ranged from <1 to 91 nmol l(-1) day(-1), and size fractionation indicated that unicellular organisms dominated N2 fixation during both spring and winter, but average unicellular rates were up to 10-fold higher in winter than in spring. Relative abundances of UCYN-A1 and γ-24774A11 nifH transcripts negatively correlated to silicate and phosphate, suggesting an affinity for oligotrophy. Our results indicate that Australia's tropical waters are indeed hotspots for N2 fixation and that regional physicochemical characteristics drive differential contributions of cyanobacterial and heterotrophic phylotypes to N2 fixation.


Assuntos
Cianobactérias , Deltaproteobacteria , Fixação de Nitrogênio/genética , Animais , Antozoários , Austrália , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Ecologia , Processos Heterotróficos , Nitrogenase/genética , Oceanos e Mares , Estações do Ano , Água do Mar/microbiologia , Análise de Sequência de DNA , Trichodesmium/genética , Trichodesmium/crescimento & desenvolvimento , Trichodesmium/metabolismo
20.
Environ Sci Technol ; 49(11): 6554-63, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25941832

RESUMO

A novel chemolithotrophic metabolism based on a mixed arsenic-sulfur species has been discovered for the anaerobic deltaproteobacterium, strain MLMS-1, a haloalkaliphile isolated from Mono Lake, California, U.S. Strain MLMS-1 is the first reported obligate arsenate-respiring chemoautotroph which grows by coupling arsenate reduction to arsenite with the oxidation of sulfide to sulfate. In that pathway the formation of a mixed arsenic-sulfur species was reported. That species was assumed to be monothioarsenite ([H2As(III)S(-II)O2](-)), formed as an intermediate by abiotic reaction of arsenite with sulfide. We now report that this species is monothioarsenate ([HAs(V)S(-II)O3](2-)) as revealed by X-ray absorption spectroscopy. Monothioarsenate forms by abiotic reaction of arsenite with zerovalent sulfur. Monothioarsenate is kinetically stable under a wide range of pH and redox conditions. However, it was metabolized rapidly by strain MLMS-1 when incubated with arsenate. Incubations using monothioarsenate confirmed that strain MLMS-1 was able to grow (µ = 0.017 h(-1)) on this substrate via a disproportionation reaction by oxidizing the thio-group-sulfur (S(-II)) to zerovalent sulfur or sulfate while concurrently reducing the central arsenic atom (As(V)) to arsenite. Monothioarsenate disproportionation could be widespread in nature beyond the already studied arsenic and sulfide rich hot springs and soda lakes where it was discovered.


Assuntos
Álcalis/farmacologia , Arseniatos/farmacologia , Crescimento Quimioautotrófico , Deltaproteobacteria/crescimento & desenvolvimento , Halogênios/farmacologia , Anaerobiose/efeitos dos fármacos , Arsênio/isolamento & purificação , Arsenitos/farmacologia , Biotransformação/efeitos dos fármacos , Crescimento Quimioautotrófico/efeitos dos fármacos , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/metabolismo , Oxirredução , Soluções , Espectrofotometria Atômica , Sulfetos/farmacologia , Enxofre/metabolismo , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...